N ov 2 00 6 Almost all elliptic curves are Serre curves .

نویسنده

  • Nathan Jones
چکیده

Using a multidimensional large sieve inequality, we obtain a bound for the mean square error in the Chebotarev theorem for division fields of elliptic curves that is as strong as what is implied by the Generalized Riemann Hypothesis. As an application we prove a theorem to the effect that, according to height, almost all elliptic curves are Serre curves, where a Serre curve is an elliptic curve whose torsion subgroup, roughly speaking, has as much Galois symmetry as possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 0 N ov 2 00 6 EXPLICIT n - DESCENT ON ELLIPTIC CURVES II . GEOMETRY

This is the second in a series of papers in which we study the n-Selmer group of an elliptic curve. In this paper, we show how to realize elements of the n-Selmer group explicitly as curves of degree n embedded in P n−1. The main tool we use is a comparison between an easily obtained embedding into P

متن کامل

N ov 2 00 5 Elliptic curves with rational subgroups of order three

In this article we present a characterization of elliptic curves defined over a finite field F q which possess a rational subgroup of order three. There are two posible cases depending on the rationality of the points in these groups. We show that for finite fields F q , q ≡ −1 mod 3, all elliptic curves with a point of order 3, they have another rational subgroup whose points are not defined o...

متن کامل

An Infinite Family of Serre Curves

Given an elliptic curve E/Q, the torsion points of E give rise to a natural Galois representation ρE : Gal(Q/Q) → GL2(Ẑ) associated to E. In 1972, Serre showed that [GL2(Ẑ) : Im ρE ] ≥ 2 for all non-CM elliptic curves. The main goal of this paper is to exhibit an elliptic surface such that the Galois representations associated to almost all of the rational specializations have maximal image. Fu...

متن کامل

An Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves

‎In a (t,n)-threshold secret sharing scheme‎, ‎a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together‎, ‎but no group of fewer than t participants can do‎. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao‎, ‎and the intractability of the elliptic curve discrete logar...

متن کامل

A Refinement of the Faltings-serre Method

In recent years the classification of elliptic curves over Q of various conductors has been attempted. Many results have shown that elliptic curves of a certain conductor do not exist. Later methods have concentrated on small conductors, striving to find them all and hence to verify the Shimura-Taniyama-Weil conjecture for those conductors. A typical case is the conductor 11. In [1], Agrawal, C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006